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Abstract—Transformer based models are widely used in var-
ious text processing tasks, such as classification, named entity
recognition. The representation of scientific texts is a complicated
task, and the utilization of general English BERT models for this
task is suboptimal. We observe the lack of models for multi-
disciplinary academic texts representation, and on a broader
scale, a lack of specialized models pretrained on specific domains,
for which general English BERT models are suboptimal.

This paper introduces ScilitBERT, a BERT model pretrained
on an inclusive cross-disciplinary academic corpus. ScilitBERT
is half as deep as RoBERTa, and has a much lower pretraining
computation cost. ScilitBERT obtains at least 96% of RoBERTa’s
accuracy on two academic domain downstream tasks. The
presented cross-disciplinary academic model has been publicly
released'. The results obtained show that for domains that use
a technolect and have a sizeable amount of raw text data;
the pretraining of dedicated models should be considered and
favored.

Index Terms—language models; clustering, classification, and

association rules; benchmarking; text analysis

I. INTRODUCTION

Several domains use precise English technolect and writing
conventions. These domains tend to produce plenty of raw text
data, e.g., journalistic writing. Many actors in these domains
tend to apply natural language understanding techniques, and
are therefore interested in the progress of domain-specific
natural language understanding. We argue that the academic
domain belongs to such domains. Indeed, several papers
showed evidence that academic writing varies from general
English in several ways, such as the type of words being used,
and the abstract nature of the discourse [1]. Academic writing
follows precise conventions and vocabulary. Moreover, the
academic domain produces a lot of raw text data quickly. The
rate of academic publication release is constantly increasing
[2]. The will to process and analyze this flow of data calls
for the use of automated methods. In the field of academic
editing, natural language processing (hereinafter NLP) tools
can: generate metadata, categorize documents, help authors
find institutions to publish with [3], guide readers with reading
recommendations, etc. Consequently, the academic domain is
suitable to conduct a study on domain-specific model training.
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Transformer-based models [4] such as BERT [5] are promis-
ing for many NLP applications. Indeed, BERT-based models
can be pretrained on raw text and then fine-tuned on supervised
tasks. Pretraining gives the model an understanding of the
underlying writing rules used in the pretraining corpus domain
(e.g., grammar, style). This baseline knowledge allows the
model to achieve outstanding performances on many types
of supervised downstream tasks. A paradigm shift came with
the release of large, capable, and available pretrained models
for general English understanding by some companies, e.g.,
FacebookAl RoBERTa [6], and OpenAl GPT-2 [7]. The avail-
ability of those highly pretrained models raises a question: is it
still necessary to train specialized models for domain-specific
tasks?

The first noticeable advantage of domain-specific models
comes from the limited number of words that a model can
learn to represent. Intuitively, the model cannot learn and
store an infinite number of embeddings representing that many
words. This limitation is the reason that a Transformer-based
model has a limited vocabulary generated using a subword
segmentation algorithm. This type of algorithm dedicates a
token to words and subwords that are important in the corpus.
The model will learn a tailored embedding representation
for every token in its vocabulary. The representation of a
word that does not have a dedicated token is a combination
of its subword embeddings. For example, a representation
of the word “likelihood” could be a combination of “like”
and “lihood” subword tokens’ embedding. Given enough data
to learn an accurate embedding representation for the word
“likelihood”, the word embedding for “likelihood” will be
a better overall representation of this word than any linear
combination of the embeddings for the subwords “like” and
“lihood”.

In this context, a theoretically ideal model would be the
combination of the following: (1) a vocabulary with one
token per word, (2) enough training data to learn an accurate
representation for each of those tokens, (3) enough computing
power to train the said model, (4) enough memory to store the
embeddings for every token, and a large number of weights.
As no one can create such a model, some domains require a
dedicated model to reach their best performances.

Other arguments in favor of domain-specific pretraining
are, (1) the control over the pretraining data: general English
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models tend to train on abundant low-quality data, leading to
biases in the resulting models. (2) The control over the archi-
tecture: Many general English models use deep architectures;
one may want to use a less deep architecture, to train with
limited resources, or to quickly generate an embedding for
every document in a database. (3) To get a better memory
load/performance ratio: When using a general English model
on a task that involves domain-specific data, most of the
potency of the model remains unused. Each unused weight
or embedding has a cost, as it makes the model slower and
heavier than it should be.

Considering those arguments, general English models still
rival domain-specific ones on their domain, because the pre-
training resources of models such as RoBERTa tend to be
unattainable by narrow domains’ communities. Nonetheless,
the intuition that the academic domain is specific enough
to benefit from a dedicated model is tested as this work
introduces ScilitBERT, an academic-specific language repre-
sentation model. ScilitBERT is based on a BERT [5] archi-
tecture and applies some of the best practices enlightened by
RoBERTa [6]; ScilitBERT is pretrained on a broad corpus of
academic articles abstracts. It is then compared to RoBERTa
and SciBERT [8] using two academic language understanding
benchmarks, namely “Journal Finder” and “Web of Science
(Hereinafter WoS) topic classification”.

II. RELATED WORK

Text representation is the task of obtaining the most se-
mantically accurate representation of a text document in a
vector space. Two heavily used word representation methods
are Glove [9] and word2vec [10]. These techniques are based,
respectively, on matrix factorization and representation learn-
ing. These techniques can represent the semantics of words
(this representation is fixed and context-independent). A mean
of document words’ vectors can be a decent representation for
the document. Other works [11], [12] have already investigated
the benefits of domain-specific training for these models.

The Transformer architecture [4] improves greatly upon
previous representation methods, even if it was initially in-
tended as a sequence-to-sequence model. The Transformer,
using a self-attention mechanism, generates a contextualized
embedding for each word in a document. A Transformer target
word’s embedding encapsulates the absolute embedding of
the target word, and the meaning of the document’s words
that are relevant to understand the target word in its context.
A neural network evaluates the “relevance” of each word in
the document toward understanding the target word. As a
sequence-to-sequence model, the Transformer is composed of
an encoder and a decoder. A property of the encoder is that it
learns to represent an input document [13] and each word it
contains, thus making it useful for tasks outside the sequence-
to-sequence spectrum.

BERT [5] leverages the representation properties of the
Transformer’s encoder. It stacks encoder layers to build a
powerful language representation model. BERT also lever-
ages self-supervised bidirectional training objectives, such

as masked language modeling (MLM) and next sentence
prediction (NSP), allowing for the efficient self-supervised
pretraining of the model on raw text data. BERT architecture
was further studied in RoOBERTa’s paper [6]. This paper lists,
analyzes, and shows some best practices that should be used
to pretrain a BERT model. Some of these best practices are
used to pretrain ScilitBERT; see Section IV-B.

The proposed work is related to numerous attempts at
pretraining a BERT model for academic text representation
[8], [14]. Those models focus on the biomedical sub-domain
of the academic domain. Both pretrained a BERT model from
scratch [14] instead of taking the mixed-domain training route,
as advised for low-resource training [15]. This work also
takes the training from scratch path, as it allows the model
to leverage the benefits of using a domain-specific vocabulary.
Both SciBERT and BiomedBERT demonstrated state-of-the-
art performances in many biomedical domain-specific tasks.

Another work on academic language representation is OAG-
BERT [16]. OAG stands for open academic graph. The idea
is to contextualize and enrich the training samples using
heterogeneous metadata, e.g., the author affiliations, their field
of studies, etc. The approach leverages metadata to increase
its performances on several tasks but, for many applications,
such as academic writing enhancement, the added metadata
are irrelevant; sometimes, the metadata are also unavailable.

III. ACADEMIC DOMAIN CORPUS

To pretrain a BERT model using a self-supervised objective,
a large corpus is required. For this purpose, a pretraining
corpus containing abstracts found on Scilit was created. Scilit
API is used to fetch articles published between January 2017
and March 2021. Scilit contains articles from various fields,
including, but not limited to, chemistry, computer science,
psychology, and geopolitics. This diversity does not allow for
a clear understanding of the distribution of each field in the
corpus. This problem is addressed in Section VI-BI1.

To improve the overall quality of the corpus, some text
preprocessing is applied on the raw corpus fetched from
Scilit. Text preprocessing is an important step when building
a model to obtain better results. In this work, the raw corpus
is processed to: (1) remove empty abstracts and duplicates,
(2) remove non-English characters, (3) exclude abstracts that
contain less than four sentences, (4) convert HTML entities
representing characters to UTF-8.

This data cleaning process removes approximately 50% of
the fetched documents. The resulting corpus is 12 GB in total,
and it contains 9.1 million abstracts, with a total of 1.8 billion
words.

IV. SCILITBERT’S PRETRAINING
This section describes the method and tools used to pretrain
ScilitBERT on the pretraining corpus.
A. ScilitBERT’s Tokenizer

To pretrain ScilitBERT, a tokenizer is required. Indeed, as
a BERT-based model, ScilitBERT uses a finite vocabulary,
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which is necessary to train on the MLM self-supervised
objective. Moreover, learning to represent words that do not
occur enough in the corpus is useless. ScilitBERT’s vocabulary
is generated using the byte-pair encoding algorithm.

1) Byte-Pair Encoding Algorithm: The tokenizer construc-
tion follows the byte-level byte-pair encoding method, here-
after BBPE [17], a more compact version of the byte-pair
encoding, hereafter BPE [18].

BPE selects the most appropriate tokens to build a vocabu-
lary that can represent the corpus. It starts by making a token
out of each character found in the training input alphabet. It
then follows a rule based on token pair frequency, to fuse two
tokens and form a new one. After generating the character-
level tokens, the first subword will be the most frequent
combination of two character tokens found in the corpus.
The token fusion step is repeated until the vocabulary has
reached the requested size. A subword tokenization method
is chosen as it allows a good control of the vocabulary size,
and a complete representation of the pretraining corpus. As
ScilitBERT follows a RoBERTa approach, the choice was
made to use BBPE instead of WordPiece. These methods are
similar, and therefore, this choice is inconsequential.

2) Choices for ScilitBERT’s tokenizer: Our tokenizer has
some characteristics, that are detailed below:

e ScilitBERT’s tokenizer is case-sensitive, and so are the
ones of the models selected for comparison. The main
benefit is disambiguation, e.g., “STAR”, meaning “Satel-
lite for Telecommunication Applications and Research”
and the object “a star”.

o ScilitBERT’s tokenizer does not consider sequences of
digits, e.g., “42” cannot be a token in its vocabulary. This
choice is made because, in other models’ vocabulary, the
digits take up a sizeable amount of space, e.g., 1769 of
52,000 tokens for RoOBERTa’s vocabulary.

3) Tokenizers’ Comparison: ScilitBERT’s tokenizer is com-
pared to a general language model’s tokenizer (ROBERTa) and
a scientific domain model’s tokenizer (SciBERT).

a) ScilitBERT’s and RoBERTa’s Tokenizer Comparison:
A comparison between the vocabularies of ScilitBERT and
RoBERTa-large (hereinafter RoBERTa’s vocabulary) shows
that only 41% of ScilitBERT’s tokens are also present in
RoBERTa’s vocabulary; e.g., “proteases”, “catalysts”, and
“autoregressive” are in ScilitBERT’s vocabulary, but not in
RoBERTa’s vocabulary. With enough data and training, our
model will better represent each token that is not present in
RoBERTa’s vocabulary.

Indeed, the ability for RoBERTa to learn the meaning of
a word, such as “prophylactic” tokenized with the subwords
“pro”, “ph”, “yI”, “actic” by its tokenizer, is questionable at
best. Those subwords are encountered in many different words
that share nothing with the word “prophylactic”. Consequently,
it is highly unlikely for RoBERTa to extract any meaningful
information when encountering said word. There are many
other words that ROBERTa cannot meaningfully tokenize, e.g.,

“is”, “ ms”. Both “prophylactic” and

“isotherms” — “is”, “other”, “

“isotherms” have a dedicated token in ScilitBERT’s vocabu-
lary, meaning that these words are frequently encountered in
academic literature. Consequently, it is important for a model
that works on academia-related tasks to learn a dedicated
representation of these words.
b) ScilitBERT’s and SciBERT’s Tokenizer Comparison:

In addition to the BBPE tokenizer, a WordPiece tokenizer [19],
[20] is trained on our corpus. This new tokenizer will allow for
a better comparison with SciBERT’s tokenizer, as SciBERT’s
tokenizer is a WordPiece tokenizer. Both vocabularies contain
approx. 32,000 tokens. ScilitBERT and SciBERT share 50%
of their vocabulary.

Frequent tokens found in ScilitBERT, but not in SciB-
ERT, include coronavirus-related terms, e.g., “COVID”, “pan-
demic”, and geographical/nationality tokens, e.g., “Chinese”,
and “American”. These geographical tokens come mainly from
Scilit geopolitical papers. Frequent tokens found in SciB-
ERT, but not in ScilitBERT, include biomedical vocabulary,
e.g., “nanocompos”’, “thrombocytop”, “arthro”, and computer
science-related vocabulary, e.g., “telecomm”, “neurode”, and
“simul” (“simulation” and “Telecommunications” are in Scil-
itBERT’s vocabulary).

Words found in SciBERT’s vocabulary, but not in Scilit-
BERT’s, are precise biomedical domain terms or subwords
for which ScilitBERT’s vocabulary contains the sur-words.

B. Model Architecture

The model is based on a BERT architecture [5], it follows
some of RoOBERTa’s best practices. The core differences be-
tween the original BERT and RoBERTa are as follows: (1) the
removal of the next-sentence prediction objective. (2) Dynamic
masking, which allows for the pretraining of more epochs with
less over fitting. (3) The removal of the input_type_ids field
in the inputs. This removal allows more sample to be fit into
the memory and, consequently, allows for an increase in batch
size, which is beneficial for the training [6].

ScilitBERT is tweaked to adapt to limited GPU resources.
It has half as many encoder layers as ROBERTa and SciBERT,
and it is consequently twice as fast during training and
inference. This difference in depth does not greatly change
the overall weight of the model, as the embedding table
represents 80% of ScilitBERT’s memory load, i.e., ScilitBERT,
while being half as deep as RoBERTa, is only 10% lighter in
memory.

C. Pretraining

1) Hyper-Parameters: ScilitBERT’s pretraining was com-
pleted using the parameters in Table I.

2) Training GPU time: An estimate of the processing time
for RoBERTa and ScilitBERT:

¢ ROBERTa: 123,000 cumulated V100 TPU hours

e ScilitBERT: 160 RTX Titan hours

The perplexity of ScilitBERT decreased during the whole
training, and was not decreasing enough during the last
hours of pretraining to justify further pretraining. The results
should be viewed through the scope of those pretraining
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TABLE I
PRETRAINING CONFIGURATION FOR SCILITBERT AND ROBERTA.
PARAMETERS THAT SHARE VALUES ARE NOT DISPLAYED AND CAN BE
FOUND IN ROBERTA’S PAPER APPENDIX.

parameter ScilitBERT RoBERTa-base
dataset size 12 Gb 160 Gb
hardware 1 Titan RTX | 1024 v100 TPU
Adam beta 2 0.999 0.98

Adam epsilon le-8 le-6

batch size 20 8000

peak learning rate | Se-5 6e-4

epoch 2 UNKNOWN
steps 910,000 500,000

durations. In its current state, ScilitBERT is under-trained.
However, RoOBERTa’s improvement on downstream tasks after
100,000 steps is very little— +2% at most on four different
benchmarks for five times as much pretraining’— whereby,
ScilitBERT can potentially achieve good results with a fraction
of RoBERTa’s pretraining time.

D. Evaluation Tasks

As the model is specialized in a domain, the usual bench-
marks are not usable for the evaluation (e.g., GLUE [21],
SQUAD [22]), as these benchmarks are too general to eval-
vate the academic language understanding. We develop two
academic language understanding benchmarks named “Journal
Finder” and “WoS topic classification”. These benchmarks
are used to test ScilitBERT against the following models.
(1) RoBERTa: a model achieving great performances in many
general English language understanding tasks. (2) SciBERT: a
BERT language model, trained on the full-text of 1.14 million
papers in computer science and biomedical topics.

1) Journal Finder: Given an article title and abstract, the
task is to find the journal in which it is published. The dataset
is an aggregation of articles, the composition of a dataset entry
is an article title, its abstract, and a label. The label identifies
the journal in which the paper is published. The same cleaning
process as for the pretraining corpus is applied; see Section III.
The articles are selected among the ones released by MDPI
before February 2021. A journal is taken into account if 200
usable articles are found within it. This process isolates 167
journals.

The dataset contains approx. 410,000 training samples,
45,000 testing samples and 41,000 validation samples; the split
is stratified because the dataset is highly unbalanced. The task
is difficult, as some journals’ topics overlap. These overlaps
are perceptible in the UMAP [23] representation of the fine-
tuned model articles’ embeddings. The embeddings are studied
to highlight intersections between some journal topics.

Let J be a journal composed by a set of articles, each
represented by Cartesian coordinates in 768 dimensions. The
coordinates for an article are the components of its embedding
generated by ScilitBERT fine-tuned on the journal finder task.
An embedding is, in this context, the output of the last hidden

2Table 4 in RoBERTa’s paper [6]

layer of the model. The UMAP algorithm is used to acquire
insights into the distribution of articles belonging to J. An
article’s embedding dimension is reduced from 768 to 32 using
UMAP. A journal, such as J, is represented by the centroid of
its articles’ embeddings. An analysis is conducted using the
Euclidean distance between journal centroids (hereafter dist):

o International Journal of Molecular Science, Nutrients and
Molecules: for each of these journal pairs, dist < 3.3.
Meanwhile, the mean of the distance between two distinct
journals is 6.9. The three journals intersect.

o Social sciences articles (Religions and Humanities) are
very well separated from the rest, dist > 10.7. These
journals are also close to one another, with dist = 1.6;
however, they do not tend to overlap, as they are compact.
Indeed, for these journals, the median distance of an
article to the journal centroid is inferior to 0.12, whereas
the mean of this measure is 1.18 across the set of journals.

o The journal Applied Sciences is confusing, as some of its
articles can be found in each scientific journal’s area. The
median distance of this journal’s articles to its centroid is
2.7; this median is inferior to 1.4 for every other journal.

2) Web of Science (WoS) Topic Classification: Another
classification task is used to evaluate ScilitBERT; the goal is
to predict the category to which an article belongs, using its
title and abstract. This task is not only a benchmark, as it is
also used in practice to determine the underlying distribution
of data in the pretraining dataset; see Section VI-B1. Some
characteristics of the dataset include: (1) the representation of
243 topics, (2) a relatively good balance with approx. 2000
articles per topic, (3) a good overall separation of the topics.
This dataset cannot be released, as it contains some papers
that are not open access. The dataset contains approx. 448,300
articles in the train set, 11,500 articles in the test set and 11,100
in the validation set. Data are extracted using the WoS APIL.

V. FINE-TUNING

TABLE III
HYPER-PARAMETERS FOR FINE-TUNING ON BOTH TASKS

h-param value
learning rate 3e-5
beta 1 0.9
beta 2 0.999
epochs 3
weight decay 0.01
fpl6 True
batch size 10*

16 for ScilitBERT and RoBERTa on the Journal Finder task.

For each competing model, fine-tuning is performed using
the same hyper-parameters. Only the batch size increases for
ScilitBERT and RoBERTa on the journal finder task, because
of the different input sizes caused by the added input_type_ids
field in SciBERT model inputs. Using the same parameters
gives an advantage to deeper models (RoBERTa, SciBERT)
as they train on the same amount of data, but update more
weights. The size of those models allows for better information
retention at the cost of an increased computation complexity.
Indeed, forward path and backpropagation take twice as long
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TABLE I

FINE-TUNED MODEL PERFORMANCES ON THE JOURNAL FINDER AND WEB OF SCIENCE (WOS) TASKS.

Journal Finder [ ScilitBERT  RoBERTa  SciBERT  ScilitBERT no pretrain®
accuracy/F1P 55.6/0.35 56.0/0.36  56.3/0.37 52.3/0.27

top-5 accuracy 89.4 89.6 90.1 86.1

top-10 accuracy 95.8 96.0 96.2 93.6

WoS topic classification |

accuracy/F1 77.7/0.76 80.9/0.80  79.1/0.78 59.4/0.56

top-5 accuracy 96.9 97.6 97.3 87.3

top-10 accuracy 99.0 99.2 99.0 94.2

@ Uses ScilitBERT’s tokenizer and architecture

b

macro-averaged

for those models as for ScilitBERT. The fine-tuning is short;
only three epochs. The goal is to retain the value of pretraining
to assess its benefit. To conduct this assessment, a ROBERTa
model that is not pretrained, but has the same characteristics,
as ScilitBERT (vocabulary, depth) is added to the experiments.
It is not a competitor and is used as a baseline model to acquire
insights regarding the impact of pretraining on the downstream
performances.

VI. RESULTS

The results for both tasks are listed in Table II. The top-
k accuracy is used to evaluate the models’ performances, as
top-1 accuracy tends to be low on tasks with that many classes.

A. Journal Finder

For the fine-tuning of the journal finder task, the pre-
training accounts for approx. 6% of ScilitBERT’s accuracy;
this classification task relies less on pretraining compared to
the WoS topic classification task VI-B. Some other tasks,
requiring deeper language understanding, will better leverage
the benefits of pretraining. Indeed, the purpose of pretraining
is to give the model a working knowledge of the language. A
classification task does not rely on this knowledge as much as
some other tasks, such as summarization. The classification of
a document does not rely on a deep understanding of grammar.

SciBERT’s table of embeddings contains only 32,000 em-
beddings corresponding to that many tokens in the vocabu-
lary; ScilitBERT has 52,000 embeddings. Consequently, Scil-
itBERT can represent more words and represent documents
faster than SciBERT, while maintaining high accuracy on this
task.

B. Web of Science Topic Classification

ScilitBERT achieves qualitative results, considering the pre-
training time and the depth of the model. During fine-tuning,
ScilitBERT was ahead for the 60,000 first steps (approx. 1.5
epochs), which means that ScilitBERT’s pretraining is indeed
useful. This also means that ScilitBERT is a potentially good
few-shot learner for academic tasks.

The unpretrained RoBERTa model is, for this task much
weaker than the pretrained models. It lies 18.3% below Scil-
itBERT for the top-1 accuracy. This task can better reveal the
value of pretraining than the journal finder task. For this task,
ScilitBERT reaches 96% of RoBERTa’s accuracy and 98.2%
of SciBERT’s accuracy.

TABLE IV
DISTRIBUTION OF CORPUS DATA FOLLOWING 45 CATEGORIES.
THE PROPORTIONS FOR THE TOP 19 CATEGORIES ARE REPRESENTED.

Meanwhile, the summarization task requires the model to
understand a text, assess the importance of different elements
in it, and generate a text that follows the language rules and
transmits the main ideas.

ScilitBERT achieves 99.3% of RoBERTa’s accuracy on
this task, while being pretrained for 0.1% of the RoBERTa

Category proportion Category proportion
UNCERTAIN 12.0% BODY 3%
MEDICAL 10.9% VISUALIZATION 2.8%
BIOLOGY 6.6% MATERIALS 2.7%
PHYSICS 5.6% HEALTH 2.1%
ENGINEERING 5.5% PSYCHOLOGY 1.9%
COMPUTER SCIENCE 4.6% EDUCATION 1.8%
DISEASES 4.2% DATA SCIENCE 1.7%
FOOD 3.3% INDUSTRY 1.6%
ENVIRONMENT 3.2% SOCIAL SCIENCES 1.4%
CHEMISTRY 3.2% OTHER 21.9%

pretraining duration and fine-tuned for half the duration of
RoBERT2’s fine-tuning. ScilitBERT is also half as deep as
RoBERT3; this difference in depth causes the computation of
a prediction and the backpropagation to be twice as fast on
ScilitBERT than on RoBERTa, i.e., on average, the inference
duration for one sample on this task is 5.42ms for ScilitBERT
and 10.76ms for SciBERT and RoBERTa (both experiments
ran on the same device in overall similar conditions).

ScilitBERT reaches 98.8% of SciBERT’s accuracy on the
journal finder task; the top 10 accuracy for both models is
close. It means that, for an application such as suggesting 10
journals to an author in which his article could fit, the choice
of the model will not matter, and ScilitBERT will still be twice
as fast, making it the better choice.

1) Distribution of Categories in the Pretraining Corpus
Using Web of Science Topic Classification: When the pre-
training corpus was generated, there were no data on the
topics found in it. It is interesting to know the distribution
of the data in the pretraining corpus to know the expected
strengths and weaknesses of the model. The ScilitBERT model
fine-tuned on the Web of Science topic classification task
is used to gain insights on the distribution of data in the
pretraining corpus. The overall pipeline is described in Fig. 1.
The set of 243 topics is mapped to a set of 45 categories
to provide an easier understanding of the data. A paper is
put in the “UNCERTAIN” category if the maximum and
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Fig. 1. Pipeline used to categorize the pretraining corpus.

second maximum values for the logit® differ by less than the
arbitrarily chosen threshold. A simple category distribution of
the pretraining corpus data is given in Tab. IV.

VII. CONCLUSION

This work showed that the computational cost of pretraining
an efficient specialized model on a restricted domain is low.
This pretraining from scratch of a model has the benefit of pro-
viding full control on the model architecture and pretraining
data. This approach also allows the use of a domain-specific
vocabulary. A specialized model will also make full use of its
capabilities, whereas, when using a general model on a narrow
domain, some parts of the model are underused.

We release ScilitBERT, which is a BERT model that follows
RoBERTa’s best practices and is specialized for academic
domain tasks. ScilitBERT, with a short pretraining, i.e., 0.1%
of RoBERTa’s pretraining duration, can compete with highly
pretrained language models on academic domain tasks. Scil-
itBERT is half as deep as RoBERTa and attains at least
98.8% of its competitors accuracy on the proposed academic
benchmarks (“Journal-Finder” and “WoS topic classification”).
The “Journal-Finder” task dataset is released as a benchmark
for academic domain NLP.

We showed that it would be beneficial for any academic sub-
domain that has access to abundant text data, to invest in the
pretraining of language models using in-domain vocabularies.
Indeed, many domains use specific language features and vo-
cabularies; for most words in these vocabularies, a subwords’
embedding combination is not a decent representation of the
said word.
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